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Abstract —The dynamic stability of viscoelastic faminated plates, subjected to a harmonic in-plane
excitation, is analyzed. The viscoclastic behavior is caused by the polymeric matrix of the fiber-
reinforced material, and a micromechanical analysis provides the time-dependent relaxation func-
tions of the unidirectional lamina, The Boltzmann representation involved in the stress-strain
refations of the laminated plate leads to an integro-differential equation of motion, obtained within
the first-order shear deformation theory. For this case, a dynamic stability analysis which employs
the concept of Lyapunov exponents is performed, and is shown to be very cfficient.

INTRODUCTION

Most of the investigations on the buckling of structures that can be found in the literature
pertain to the buckling of elastic structures. However, it is well known that many materials
exhibit viscoelustic behavior, namely the response is time, as well as history, dependent.
There are a number of studies dedicated to the analysis of the buckling of viscoelastic
structures. For example, the quasi-static buckling of viscoelastic columns was considered by
Fliigge (1967) and Glockner and Szyszkowski (1987), whereas the buckling of homogeneous
plates was treated by Troyanovskii (1970). Recently, the quasi-static buckling of viscoelastic
laminated plates was treated by Cederbaum and Aboudi (1989a).

The analysis of the dynamic stability of a structure, subjected to a periodic loading, is
much more complicated duce to the existence of inertia terms in the governing equations. It
turns out that for certain relationships between the driving frequency and the natural one,
dynamic instability occurs, in the sense that the amplitude of the response increases without
bound. The problem of the dynamic instability of elastic structures (columns, plates and
shells) was investigated by Bolotin (1964), where the instability regions were constructed
by using Fourier analysis. Extensive bibliography and further results on this problem were
given by Evan-lwunowski in a review paper (1965) and in a monograph {1976).

The analysis of the dynamic buckling of viscoclastic structures has further compli-
cations, since the Boltzmann representation involved in the stress—-strain relations leads to
an integro-differential equation of motion, rather than an ordinary differential equation as
in the clastic case. Chandiramani et al. (1989) determined the dynamic stability of ortho-
tropic shear-deformable viscoelastic composite plites subjected to constant in-plane edge
foads. Stevens (1966) and Matyash (1973) used approximate methods which involve small
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parameter expansions and string-dashpot representations to analyze this problem, while
Seyszkowski and Glockner (19835) with the same representation. analvzed the dynamic
instability of a viscoelastic column using the concept of Lyapunov functions. Bogdanovich
(1987) analyzed composite shells.

In Aboudi er «l. (1990). a general approach is offered for the determination of whether
a viscoelastic homogeneous plate, subjected to a harmonic in-plane excitation, is stable.
The analysis was based on the evaluation of the Lyapunov exponents, according to which
the stability (or instability) of the plate was established. The viscoelastic representation is
expressed by the Boltzmann superposition principle. which allows the modeling of any
linear viscoelastic material. Following Goldhirsch er al. (1987). an efficient alogirthm was
suggested for the computation of these Lyapunov exponents. Positive values of Lyapunov
exponents indicate an instability situation. The accuracy of the stability prediction was
checked in the cases of a perfectly elastic plate as well as a viscoelastic plate governed by
the Voigt-Kelvin model. for both of which the stability analysis can be independently
treated by the method discussed in Bolotin's monograph (1964). It turns out that excellent
agreement between the two approaches exists. Then, the analysis of a viscoelastic plate
governed by the standard lincar solid model was derived and applied to verity that a
dynamic stability exists.

In the present paper the approach utilizing the Lyapunov exponents for the deter-
mination of the dvnamic stability ts applied to viscoelastic laminated plates, in which
polymeric matrices are employed. It is well known that this type of material exhibits
viscoclastic behavior. Previous investigations by Aboudi and Cederbaum (1989), Ceder-
baum and Aboudi {1989b) and Cederbaum (1990) showed that these viscoelastic effects are
significant both from the qualitative and the quantitative points of view.

Since the overall behavior of the single lamina, in the laminated plate, s viscoclastic
and transversely isotropic, itis neeessary to determine the five independent relaxation (or
creep) tunctions, which characterize its behavior. To this end a micromechanics theory,
developed by Aboudi and reviewed in Aboudi (1989), is utilived. This micromechanics
theory is based in the analysis of a periodic array of fibers, embedded regularly in the
matrix. By studying the detailed interaction of the fibers und the matrix constituents, one
can gencrate the overall properties of the compostte. The uscfulness of this theory was
demonstrated in analyzing the behavior of viscoclastic laminated plates under quasi-static
(transverse and in-planc) loads (Cederbaum and Aboudi, 1989a), dynamic loads (Ceder-
baum and Aboudi, 1989b) and random loads (Cederbaum, 1990).

In the present investigation we deal with the problem of the dynamic instability of
antisymmetric angle-ply luminated plates. The equations of motion are derived by using
the first-order shear deformation theory (FSDT). The single lamina consists of unidi-
rectional elastic T-300 graphite fibers reinforcing a viscoelastic epoxy matrix (Epon 815
mixed with Versamid 140), which was characterized by Moehlenpha er al. (1971). It is
shown that the viscoclasticity of the resin matrix reduces the dynamic instability region of
the laminated plate as compared with the perfectly elastic plate. This implies that, while for
certain load's characteristics the perfectly elastic composite plate is dynamically unstable,
the presence of the viscoelusticity might stabilize the plate.

COMPOSITE EFFECTIVE ELASTIC CONSTANTS
Let (v,..x5. xy) denote a Cartesian system of coordinates with x, oriented in the fiber
direction of a unidirectional fiber-reinforced elastic composite. The constitutive law for the
effective transversely isotropic behavior of such composites can be determined from a
micromechanics analysis in the form (Aboudi, 1989)

(h

d=FE

™y

“'hcrc (i = ((i( 1« 0_3:.6'11.(;[1. O:H.O_':x) l\ [hC dverage SLress., g = (l‘:| |.g::.g;}, 25[:. 2£|}, 26:x)
is the average strain. and
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where ¢;; are the effective elastic constants, whose explicit expressions in terms of the fibers
and matrix properties and the reinforcement volume ratio can be found in Aboudi’s review
paper (1989).

FORMULATION

Within FSDT, the following displacement field across the plate thickness is considered :

Vitx,y.2.0) = U(x, v )+ 2y (xa 30 0)
Vale, pozit) = V(x, y. )+ 2y, (x, v, 1)
Vi, y. 0) = W(x, p,1). 3)

Here V, V, and V; are the time-dependent components of the threc-dimensional
displacement vector in the x, y and = dircections, respectively, while U, ¥ and W denote the
displacements of a point (x, ¥) on the mid-plane = = 0 and , and ¥, are the rotations of
the normals to the mid-plane about the y and x uxis, respectively.

The equations of motion of laminated plate subjected to in-plane loads and inertial
forces, obtained by using the first-order shear deformation theory, are [see Whitney and
Pagano (1970)]

Nn.w+Nnu = ]|U+Illb..r
N\r. t+ er. v = II V+ I!'I"r
Qn‘.t'+ er. v Nl W,,\'\'_ Nl u/.rr = II n./
M.t.t,x+ A”\n" v Q\'\' = I"I;\ + 13(]
Mu'. f+ A’l“,_ ¥ Qr\' = I\'Ijr + [] V (4)

where N, and N, arc in-plane loads in the x and y directions, respectively, the inertia terms
are defined as

h 2

(Il'llv[.l):J‘ P(l.:.::)d:,

—hi2

while the stress and moment resultants, each per unit length, are respectively given by

hi 2
(N,r.tv N_rr\ N.ryt Q.uv ny) = J (G.\',r‘ Tyys O’_‘._‘., Oze ay:) d:
-hi2
hi 2
(M.\'.n M_ryv M.ty) = j 2 :(G',\-_n ay_vi axy) d:

where o, (i,j = x, y) are the stress components.
Using eqn (3) in conjunction with the strain—displacements relations, the following
relations for the strain components ¢,; are obtained ;
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8\‘l = L',\ +:WY.\
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e, =0+ 1V +z00  +y,))
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.=y, +H . (3)

With E in (1) representing the five independent elastic constants of the equivalent
transversely isotropic material which represent the unidirectional composite, it is possible
to obtain the five time-dependent functions which characterize the viscoelastic composite
whose phases are viscoelastic materials. Each phase (fiber or matrix) is represented by the
Boltzmann's superposition principle (Christensen. 1982). which in tensorial notation is
given in the convolution form as follows

ol (1) = ('152'1(1)1117'(0)+J it —0éd (0 de (6)
{

b

where %), are the relaxation functions of the p-phasc. By employing the micromechanical
analysis in conjunction with the correspondence principle in the transform domain, and by
inverting the Laplace transform (Cederbaum and Aboudi, 1989a), one obtains the time-
dependent relaxation functions of the unidirectional lamina denoted by ¢, (7). The consti-
tutive relations of the lamina are of the same form as in egn (6). but with effective relaxation
functions ¢, (1) replacing the relaxation functions of the phase.

The constitutive relations of the viscoclastic plate cun be written in the form

(N FAy Ay Ay By B BT (U
N, Ao Ay B B, B, I

J N, - Adve Bl B B, » U+
M, D, Db, D, 1788
M., D.. D, W,

LM, ) | symmetric Do | Lo +w. )

and
. {0 A W+ W,
Qn =k Ay 45]*{/’ : (7)
Q\\ ‘445 ““\' 'p‘+”.\
where the asterisk denotes the convolution operators. Here & is the shear correction factor

and A,,. B, and D,, are defined for viscoclastic materials as

h 2
(A, = 4,(1). B, = B,(1.D, = D, (1)) =f 0.1z ds i j=1.206
h2

K2
A,=4,0) =J c,(Ndz i j=43 (8)

2

and Q,,(r) are the reduced components of the relaxation functions ¢, (7).

For the case of a square (0 € x. v < «) antisymmetric angle-ply laminated plate, simply
supported all around. the solution functions for the five unknown functions can be written
using the method of separation of variables. as
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. mnx nny
U(x,y.t) =sin e cos . f.(0)

mnx . nny
V(x,y.t) = cos —sin - 1)
d

. mmnx . nmy
Wi(x.y.t) = sin — sin —2’—— f.(0
a

mnx . nny
Y. (x. ¥, 1) = cos — sin —a' [0
a

Y, (x, y.1) =sin 'ﬁ? cos '? £, 9)

Let %,, = mnx/a and §, = nny/a. then the various terms of the equations of motion (4)
are given, for each m and n, by (the subscripts m and n are omitted. for convenience) :

Neex = {2 [A (O] +aBlA20(0] + 27 [B1 oy (0] + 2B[ B, ox(1)]} SC
N = {2BlA oot (D] + B2 [Aoeui(D] + B[B1ox (0] + 2By (0]} SC
N = {2 At (D] +af(A et (D] + 27 [B o x(D] + 2B B2y (D]} CS
Nov = {2BlA u(O] + (A0 (0] + BB (0] + f2[Bex(D]} CS
Qree = k{2 [Assw(D] +a[As55x(0]}SS

Qv = k{B*[Acaw (D] + BlA0ay(0]} SS

M., = (2[B, (O] +a2f[B att(D] + 2 [D ) x(D] +2B[D 2 0(1)]} CS
M., = {af[B (D] + (B2t (D] + af[Deoy (D] + [ Dse x(D]} CS
M, = {2[B ()] +af[Brt(1)] + 2 [Booy (1)) + 2B[D e x(1)]} SC
M, = {2B(B\ ot (D] + B [Brou(D] +2B[D 1 2.x(0)] + B[ D12 1(0]} SC
Q.o = k{a[Assw(n)] +[A5sx()]}CS

Q. = k{BlAw)+ Ay} SC (10)

L

where
SC =sinaxcos fiy; CS=cosavxsinfly; S§=sinaxsinfy.

In addition,

t

Apu(t) = Au(’)ﬁ:(o)'*'J' An("‘f)/:(f)dﬂ

o

so that in general

F,q0) = E,(’)/;(0)+j‘ F,(t—0) /(1) dr, (1)

with F; = A4,;, B,,. D,;. The in-plane loading contains constant (N,,) and periodic (N,,)
terms, so that
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N =N, +N  costh {2y

where 115 the time and # is the load frequency.

Subsututing egns (10)-(12) into {4) we obtain a set of fis ¢ integro-ditterenual equations.
which govern the motion of the shear deformable viscoelastic laminated plate subjected to
in-plane parametric loading.

METHOD OF ANALYSIS

We are interested in the stability of the unperturbed eyquilibrium of the viscoclastic
faminated plate. To this end we investigate the set of the integro-differential equations of
the perturbed motion [equs (4)] to evaluate the corresponding Lyapunov exponents. This
procedure was employed by Aboudi es al. (1990). where the stability of a homogencous
plate represented by a single integro-differential equation of motion was investigated.

For the treatment of an ordinary differential equation with time-dependent cocthcients,
Lyapunov introduced the concept of characteristic numbers. the sign of which determines
whether the unperturbed motion is stable [sce ¢.g. Hahn (1967)]. The negative values of
these characteristic numbers are presently referred to as the Lyapunov exponents. According
to Lyapunov, if all the exponents are negative, then the unperturbed motion is asymptotically
stable. In addition, Chetacv (1960, 1961) proved that if onc of the Lyapunov exponents is
positive then the unperturbed motion is unstable.

Recently, Lyapunov exponents became a powertul tool in the study of chaotic motion
[sce c.g. the recent monograph by Moon (1987)] and tor the investigation of nonhincar
dynamic systems [see Goldhirsch er af. (1987)]. From the above discussion, it follows that
it suffices to compute the fargest Lyapunov exponent for the determination of the stability
or instability of the unperturbed motion of the viscoclustic plate in question. The following
procedure due to Goldhirsch et af. (1987), provides the Lirgest Lyapunov exponent of the
system (Berge et al., 1987).

Consider the system of ordinary differential equations

¥y = Gy +g() (13)
with initial condition that were normalized such that
vy = 1, (14

where || -1 is the Euclidean norm. This system is solved numerically [e.g. by using the high-

e,
order Runge-Kutta-Verner procedure] for a chosen time interval 7. The resulting solution
y(T) is then normalized to obtain

o D
“D =y

(I3
In addition, we compute

Uy =Inj{y(T. (16)

The same system of equations is solved now for the next time interval 7 < ¢ < 2T but with
the initial values z(T). The numerical solution will produce y(27) and
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U:=Mhn|yQD

oy = YCD
220 = Eni

and the procedure is continued. After NT intervals we have U, U,. Let

N

R
My =”A:,T : (n

It should be mentioned that although it appears that the time interval 7 can be chosen
arbitrarily, the determination of the Lyapunov exponents is obtained asymptotically by
taking a sufficient number of time intervals (NT). It is demonstrated by Goldhirsch et al.
(1987) that uy when plotted against 1/NT tends to a positive number as 1/NT approaches
zero, if the system is unstable. The rate of convergence proved to be fast as compared to a
standard procedure {(Goldhirsch ef al.. 1987). 1t should be noted that the implementation
of the above procedure in a computer program is straightforward.

In order to reduce the governing equations to a system of first-order equations of the
form (13), let £,(0) and j:,((}) be the initial values of £ (1) and £, (). respectively, at the first
time interval Ar = T/M, where M is a chosen positive integer. Any relaxation function in
eqn (11) can be written in the form (7, J are omitted):

F(t) = Fo[l =9(0)] (18}

where () =0at ¢ <0. Let
H{n) = F(f)f;(OH'J; Fli—t) f(t)dt = f}x{:f;(f}—lfl(f)f;(m *ﬁ' lf'{!'f)ﬁ;(?)d!:"

0grgsA {19)
and for those cases where ¢{t—t) = ¢ (N, (z), H(2) can be approximated in the form
H(0) = FyL£,(0 =) f(0) = (0 (0] (20)

where

() =4 (0 L* ya{r)de.

This representation is given to each time-dependent term in eqns (10), where the function
(1), for each case, is derived by using the micromechanics theory. In the second time
interval A7 € ¢ < 2A1, with £,(0) and £,(0) denoting the initial values of f{r) and f(1)
at 1= Ar, we again use eqn (I8) by shifting the time reference. Consequently, for any
(p—DAr <t < pAt, p=1,2,3,..., the equations of motion (4) can be written in the form
of eqn (13), where the components of the (1 x 10) vector g(¢) and the (10 x 10) matrix G
can be determined from eqns (4) in conjunction with eqn (10).

APPLICATIONS

In the following examples, square angle-ply laminated plates simply-supported all
around are investigated. A four-layered [45°, —45°, 45°, —45°] plate is considered, where
the total thickness is 0.5 mm, and the length-to-thickness ratio is fixed at 20.

SAY 28:3-¢
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Fig. 1. Measured data (Mochlenpha er of. 1971) of an epoxy matrix at 50 C. The solid line is its
representation by cubic splines.

Results are given for a viscoclastic epoxy matrix (Epon 815 mixed with Versamid 140)
whose measured time-dependent Young's modulus EY™(r) was reported in Mochlenpha ¢t
al. (1971) at 50°C. Cubic splincs were fitted to these measured data in the region 0 < ¢ < 10°
min. The agreement between the measured values and the cubic splines representation, as
shown in Fig. 1, is excclent. The Poisson’s ratio of the matrix was assumced to be constant,
v = 0.38 (Schapery, 1974). It should be noted, however, that the micromechanics analysis
{Aboudi, 1989) allows the use of time-dependent Poisson’s ratios.

The T-300 graphite clastic fibers were taken to reinforce the epoxy matnix with a 60%
volume ratio. The clastic constants of the transversely isotropic graphite fibers are £
=220 GPa, v\ = 0.3, £V =22 GPa, v{" = 0.35 and G{"" = 22 GPa, where E{"" and v{"
denote the longitudinal Young's modulus and Poisson’s ratio, £’ and v’ arc the tranverse
Young's modulus and Poisson’s ratio and G is the axial shear modulus.

In order to obtain the refaxation function F(r) in the form of egn (18). let us assume
that F{¢) can be described as

B
; = . o e e e Y = I — 2
F(ty = A+ B¢ («4+B)(:| A~§-B“ ¢ ):l Folt—(n)] (2h
where
Fo=A+B and y(1) = B'(l e 7
0= A+ and ¢ = 1iB e ).
This yields
Fu—t) = Fll=¢—-1)]=(4+B)] I - »'B“(l"c ""C")]~ (22)
0 A+B

With egns (21). (22). the function H (1) {eqn (20)] becomes

!

, B B (. 8 ("
H(1) = F(,[_/,,(r)—— i l®- g—ﬂ}ﬁ‘f‘,(r)dw T L‘ e /‘,(r)dt]

B B . .
= e e v o m
Fn{:fq(l‘) y +Bf¢(f) T8 ﬁ e _l‘,(t)dr} (23)

f
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I/NT

Fig. 2. Lyapunov exponents for an elastic plate, n = 0.0.

Within each A¢ and the appropriate initial conditions. £, (0) and £,(0). # (1) is approximated
as

B ' B vt _B — YAy
H{t) = Fn[(‘ i _;‘b)./‘,(f)— 4+8° LD A+B“ ¢ )/l,,q({)}
Y

|-
= Af()-Be " [O) =B - f(n. (29)
7

The five time-dependent relaxation functions of the lamina obtained within the
micromechanics theory are (moduli in Giga Pascals and time minutes) :

E; = 132.0+0.70 exp (~0.00161)
Ey = 0.050+6.29 exp (~0.0018¢)
Grr = 0013+ 2.14 exp (~0.00200)
Gip = 0.016+2.05 exp(—0.0018¢)
vir = 0.34+0.0008 exp (—0.0017¢) (25)

where E; and Ey are the longitudinal and transverse relaxation functions, Gy and Gy are
the corresponding shear relaxation functions and vy is the major time-dependent Poisson
ratio. These functions enable one to determine the time-dependent functions 4,,(¢), B,(#)
and D, (1).

The in-plane load considered is in the y direction only (N,, = 0) and where N, = 0.
The load frequenncy, 8, is taken as twice the fundamental natural frequency of the elastic
laminated plate, derived from the free vibration problem [sce e.g. Cederbaum er al. (1989)].
The amplitude of the in-planc force is given by N,, = n2N, where N is the static buckling
load [see e.g. Srinivas and Rao (1970)] and # is a coefficient.

The following cases were considered : (i) elastic plate [¥(r) = 0 in all stiffnesses] with
n = 0.0—Fig. 2, (ii) viscoclastic plate with n = 0.0—~Fig. 3 and with n = 0.4—Fig. 4.

In the elastic case the Lyapunov exponents are approaching zero, indicating stability
of a system without damping. In the viscoelastic counterpart the exponents are approaching
negative values implying that the stability exists. When the system is unstable, the Lyapunov
exponents are approaching positive values, both for elastic and viscoelastic cases.
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I/NT

Fig. 3. Lyapunov exponents for a viscoelastic plate, n = 0.0,

o] 02 04 06 o8 10
I/NT

Fig. 4. Lyapunov exponents for a viscoelastic plute, p = 0.4
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