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,\hslrllc!·-The dynamic stahility of viscoelastic Iilminated plates. subjectcd to a harmonic in-pl;mc
c'citalion. is .1II.\lyzcu. The viscoelastic behavior is caused by the polymeric matri'" of the fiber­
reinl'clrceu material. ;mu a miCWII1l:chanical analysis provides the time·dependent rc!;l",ation func­
lions of the lIniclireclional lamin;1, The Boltzmann repfl:sentalion involved in the stress -strain
rel.llions of Ihe laminated plate leads to an integro·dilTerential equation of motion. obtaincd within
the lirst-order shear udi,lTlllation thcory. For this case. a dynamic stability analysis which employs
the concept "I' Lyilpllnov ellpollcllts is performed. ;lOd is shown to be vcry ellkicllt.

INTRODUCTION

Most of the investigations on the buckling of structures that can be found in the literature
pertain to the buckling of elastic structures. However, it is well known that many materials
exhibit viscoelastic behavior, namely the response is time, as well as history, dependent.
There are a number of studies dedicated to the analysis of the buckling of viscoelastic
structures. For example. the quasi-static buckling of viscoelastic columns was considered by
FlUgge (1967) and Glockner and Szyszkowski (1987), whereas the buckling ofhomogeneous
plates was treated by Troyanovskii (1970). Recently, the quasi-static buckling ofviscoelastic
luminated plates was treated by Cederbaum and Aboudi (1989a).

The analysis of the dynamic stability of a structure, subjected to a periodic loading, is
much more complicated due to the existence of inertia terms in the governing equations. It
turns out that for certain relationships between the driving frequency and the natural one.
dynamic inswbility occurs. in the sense that the amplitude of the response increases without
bound. The problem of the dynamic instability of elastic structures (columns, plates and
shells) was invcstiguted by Bolotin (1964), where the instability regions were constructed
by using Fourier analysis. Extensive bibliography and further results on this problem were
given by Evun-Iwanowski in a review paper (1965) and in a monograph (1976).

The analysis of the dynamic buckling of viscoelastic structures has further compli­
cations. since the Boltznmnn representation involved in the stress-strain relations leads to
an integro-differential equation of motion. rather than an ordinary differential equation as
in the ebstic cuse. Chundimmani C'( al. (1989) determined the dynamic stability of ortho­
tropic shear-deformahle viscoel'lstic composite plutcs subjected to constant in-plane edge
loads. Stevens (1966) and Matyash (1973) used approximate methods which involve small
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paramcter cxpansions and string-dashpot representations to analyze this problem. while
Szyszkowski and Glockner (1985) with the same representation. analyzed the dynamic
instability of a viscoelastic column using the concept of Lyapunov functions. Bogdanovich
(1987) analyzed composite shells.

In Aboudi I!t at. ( 1990 I. a general approach is offered for the determination of whether
a viscoelastic homogeneous plate. subjected to a harmonic in~plane excitation. is stable.
The analysis was based on the evaluation of the Lyapunov exponents. according to which
the stability (or instability) of the plate was established. The viscoelastic representation is
expressed by the Boltzmann superposition principle. which allows the modeling of any
linear viscoelastic material. Following Goldhirsch I!t at. (19871. an efficient alogirthm was
suggested for the computation of these Lyapunov exponents. Positive values of Lyapunov
exponents indicate an instability situation. The accuracy of the stability prediction was
checked in the cases of a perfectly elastic plate as well as a viscoelastic plate governed by
the Voigt-Kelvin model. for both of which the stability analysis can be independently
treated by the method discussed in Bolotin's monograph (1964). It turns out that excellent
agreement between the two approaches exists. Then. the analysis of a viscoelastic plate
gon~rned by the standard linear solid model \vas daived and applied to verify that a
dynamic stability cxists.

In thc present paper thc approach utilizing the Lyapunov exponents for the deter­
mination of the dynamic stability is applied to viscoelastic htminated plates. in which
poIYI11l:ri\.· matrices are employed. It is well known that this type of material exhibits
viscoelastic hehavi()L Previous investigations by Aboudi and Cederb~lll111 (1989). Ceder­
baum and Ab(ludi (1989b) and Cederbaulll (1990) showed that these viscoelastic etfects are
significant both from the qualitative and the quantitative points of view.

Sim:e the \In:r~dl behavior of thc single lamina. in the laminated plate. is viscoelastic
and transn'rsely isotropi-:. it is ne-:cssary to determine the live independent relaxation (nr
neepJ fum:tions. whi-:h chara-:terize its behavior. To this end a micromechanics theory.
developed by Aboudi and reviewed in Abmadi (19X9J. is utilized. This micromechanics
theory is hased in the analysis of a periodic array of Iibers. embedded regularly in the
matrix. By studying the detailed interaction of the libers and the matrix constitucnts. onc
can generate the o\erall properties of the composite. The usefulness of this theory was
dcmonstrated in analyzing the behavim of viscoelastic laminated plates under quasi-static
(transwrse and in-plane) loads (Cederbaum and Aboudi. 1989a). dynamic loads (Ceder­
baum and Aboudi. 198%) and random loads (Cedcrbaum. 1990).

In the present investigation we deal with the problem of the dynamic instability of
antisymmetric angle-ply laminated plates. The cquations of motion arc derived by using
the lirst-order shear deformation theory (FSDT). The single lamina consists of unidi­
rectional elastic 1'-300 graphite libers reinforcing a viscoelastic epoxy matrix (Epon 815
mixed with Versamid 140). which was characterized by Moehlcnpha et (1/. (1971). It is
shown that the viscoelasticity of the resin matrix reduces the dynamic instability region of
the laminated plate as compared with the perfectly elastic plate. This implies that. while for
certain load's characteristics the perfectly clastic composite plate is dynamically unstable.
the presence of the viscoelasticity might stabilize the plate.

COMPOSITE EFFECTIVE ELASTIC CONSTANTS

Let (xl,,\·",x,) denote a Cartesian system of coordinates with Xl oriented in the fiber
direction of a unidirectional fiber-reinforced clastic composite. The constitutive law for the
ctl'ective transversely isotropic behavior of such composites can be determined from a
micromcchanics analysis in the form (Aboudi. 1989)

11 = Ei (I)

where 11 = (rf I I. rf 2:- rf \ 1. rf 12. tTl 1. rf 2,) is the average stress. i = (;;1 I J 2", i,.,. 2i: 12' 2iI'. 2';2,)

is the average strain. and
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(2)

where ei ; are the effective elastic constants. whose explicit expressions in terms of the fibers
and matrix properties and the reinforcement volume ratio can be found in Aboudi's review
paper (1989).

FORMULATION

Within FSDT, the following displacement field across the plate thickness is considered:

VI(X.y.:.t) = U(x.y. f) +:t/!.(x. y. t)

V2(X.y.:.f) = V(x.y.t)+:t/!,.(x.y.t)

VJ(x. y. f) = W(x. y. f). (3)

Here VI. V! and VI arc the time-dependent components of the three-dimensional
displacement vector in the x. y and: directions. respectively. while U. Vand W denote the
displacements of a point (x. y) on the mid-plane: == 0 and I/J \ and t/! ,. arc the rotations of
the normals to the mid-plane about the y and x axis. respectively.

The equations of motion of laminatcd plate subjected to in-plane loads and inertial
forces. obtained by using the first-order shear deformation theory. are [see Whitney and
Pagano (1970)]

N".• +N" = 110+ I!.}i.

N, + NI'I' = II~'+12,b·..

Q".,+Q,.,.. ,.-Nt W - N!W.,.,. = II ~V

M u .,,+ 1'.1, - Q" = II'li, + I!O

M"..• +1'.I 1·-Q,'1 = II,li,·+/.1~; (4)

where Nt and N! are in-plane loads in the x and y directions. respectively. the inertia terms
are defined as

while the stress and moment resultants. eaeh per unit length. are respectively given by

f
h!!

(Nu • N,.•.• N.t... , Q.t.t. Qyy) = (0'., ... 0' ..... 0'"•.• 0' ..:. 0'.,.:> d:
-hi!

f
h!!

(M.t ... M...y , M.t )·) = . :(0'..... 0'....... O'x... ) d:
-h, 2

where O'ij (i,j == x, y) are the stress components.
Using eqn (3) in conjunction with the strain-displacements relations. the following

relations for the strain components E:iJ are obtained;
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£" = C,+I'.,+:(I/I,,+l/J,,)

£" = l/J, + n',

£" = l/J,+ n'.,.

With E in (I) representing the five independent elastic constants of the equivalent
transversely isotropic material which represent the unidirectional composite. it is possible
to obtain the five time-dependent functions which characterize the viscoelastic composite
whose phases are viscoelastic materials. Each phase (fiber or matrix) is n:presented by the
Boltzmann's superposition principle (Christensen. 1982). which in tensorial notation is
given in the convolution form as follows

all'l(/l = CII'I(/l/,II"(O)+f' CII"(I-r)/:>I')(r)ci!
f I f ,J..I 'J.. { I/k I .~ I

O'

(6)

where C:;;II are the relaxation functions of the ,,-phase. By employing the micromechanicil
analysis in conjunction with the correspondence principle in the transform domain. and by
inverting the Laplace transform (Cederbaum and Aboudi. 1989a). one obtains the time­
dependent relaxation functions of the unidirectional lamina dellllted hy (',,(I). The wnsti­
tutive relations of the lamina are of the same form as in eqn (6), hut with dlcctive relaxation
functions c,,(I) replacing the relaxation fUlH.:tions of the phase.

The constitutive relations of the viscoelastic plate can he written in lhe form

IV" A" ..I,: A It, IJ" IJ I: IJ I" U

1.'

N... A" .",,, 1J 1 : IJ., , Il:" /. ,

lN" A htl Il", IJ C/' IJ"" l : + /',
.f..

AI" nIl f) I: f) I', 1/1 "

AI" f) ': f)", ,b, j
AI" symmetric n,,,, '/I, , + 1/1, ,

and

{Q,,} = kC'44 A4'}{'/I, + II:,} (7)
Q" .1 4, .,1" '/1,+11,

where the asterisk denotes the convolution operators. Here k is the shear correction factor
and A". B" and D" arc defined for viscoelastic materials as

i. j = I. 2. (I

i. j = 4.5 (X)

and Q,,(I) are the reduced components of the relaxation functions c,,(I).

For the case ofa square (0 ~ x. y ~ a) antisyl11metric angle-ply laminated plate. simply
supported all around. the solution functions for the live unknown functions can he written
using the method of separation of variables. as



Dynamic instability of laminated plates

m1tX n1trr.:(X. r. I) = sin - cos -" /.(/)
- a a

m1tX . mn' r
V(X. r. I) = cos - Sin -' h(/)

- a a

. m1tX . n1t 11
W(X. r. I) = Sin - Sin -' fA/), a a

nmx n1tr
t/JAx. l'. I) = cos - sin -' f,(t), a a

. m1tx n1t r f,t/J .. (x. r. I) = Sin - cos -' ,.(/)., a a-

311

(9)

Let ~m == nmx/a and fl. == n1ty/a. then the various terms of the equations of motion (4)
are given. for each m and n. by (the subscripts m and n are omitted. for convenience):

No" = {~~[A 111I(t)) +~fJ[A l~l'(I)] +~~[BI6y(t)] +~fJ[BI6X(/)]}SC

N,y., = {~fJ[A 66dt)] + fJ~[A 6hll(t)] + fJ~[B16X(/)] + ~{I[B~6y(t)]}SC

No- ... = {~~[A 66l'(t)] + ~/I[A h6l'(t)] + ~1[B16X(/)] + ~(I[B ~6y(t)]} CS

N I ".,_ = {~fJ[A I~1I(t») + {f~[A 1~,.(t)] + ~{f[B11,y(t)] +r[B ~hX(/)]}CS

Qu.x = k{~2[AHW(/») +a[AHx(/)]}SS

Qv,v.y = k {(l2[A 44 w(I)] +(I[A 44y(/)]} SS

M"... = {~2[Blhl'(/») +~{f[Blhll(t») +~~[D"X(t)] +#f(D,~y(t)nCS

M "'." = {~/f[B I611(t») +{/~[B~61'(/)] + ~/f[D66y(/)] + {/~[D66X(/»)} CS

M "'.x = {~1[B I 611(1)) + ~{I[B ~6l'(t») +~1[B66y(t)] +#f[D66 X(t)]} SC

M'I .• = {~II[BI6l'(t») +{qB2611(t)] + ~{I[D 12X(t») + {l2[D n l'(t)]}SC

Qu = k{oc[AHw(/)] + [A HX(/)]}CS

QyV = k{{I[A 44 w(t)] + [A 44y(t)]}SC

where

SC = sin ~x cos Ily; CS == cos ~x sin {Iy; SS = sin ax sin {Iy.

In addition.

so that in general

( 10)

(II)

with F;i = Ali' Bil • D'i' The in-plane loading contains constant (N".) and periodic (N",)
terms. so that



N, = .v" + S',i COS (1/

where t is the time and (1 is the load frequency.
Substituting eqns (10)-( 12) into (4) we obtain a set ofti\ e intcgro-din;:rential cquati()[lS.

which govern the motion of the shear deformable viscoelastic laminat~'d plate suhjected t\)
in-plane parametric loading.

METHOD OF-\:"\lYSIS

\Vc are interested in the stability of the unperturbed c\.juilibrillfll of the \iscodastic
laminated plate. To this end we investigate the set of the integro-ditTerential equations of
the perturbed motion [eqns (4)] to evaluate the corresponding LyapurlO\' exponents. This
procedure was employed by Aboud! et al. (1990). where the stability of a homogeneous
plate represented by a single integro-differential equation of motion was ill\estigated.

For the treatment ofan ordinary differential e\.jllation with time-dependent coetliciellts.
Lyapunov introduced the concept of characteristic numbers. the sign of which determines
whether the unperturbed motion is stable [see e.g. Hahn (1\)67)]. The negati\'e \alues of
these characteristic numbers arc presently referred to as the Lyapunov exponents. According
to Lyapllnov. if all the exponents arc negative. then the unperturbed motion is asymptotically
stahle. I n addition. Chetaev (1960. I% I) prove.:d that if onc or the l.yapulH1\ op\ lIH:nts is
positive thcn the unperturbed motion is unstahk.

Recently. Lyapunov exponents became a powerful tool in the study \1f cha\1ti\.· IllOtioll
[SIX e.g. the nx:c:nt monograph by Moon (I\)X7)! and Il)r the ill\c:stigatioll or llonlin\.,;tr
dynamic systems [sec: Cioldhirsch ('( ill. (I\)X7)!. f:rom the ah\1VC discussi\1n. it Id!tms that
it sullices to compute the brgest Lyapunov exponent for thc dell.·rminatioll of the stahility
or instahility of the unperturbed motion of the viscoelastic plate in questi\1ll. The roll\1wing
procedure due to Goldhirsch et al. (I\)X7). provides the largest l.yapUll\1\ cxp\1nent \11' the
system (Berge et al., 1987).

Consider the system of ordinary dilferential equations

y(t) = G(t)y{t) +~(I)

with initial condition that were normalized such that

lIy(O)!1 = I.

( 1\)

where il iI is the Euclidean norm. This system is solved numerically [e.g. hy using the high­
order Runge-Kutta-Verner procedure] for a chosen time interval T. The resulting solution
Y( T) is then normalized to obtain

In addition. we compute

U 1 = In lIy(T) .

( 15)

( 16)

The same system of equations is solved now for the next timc interval T < t < ::. T but with
the initial values z(T). The numerical solution will produce y(::'T) and
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U~ = In lly(2T) II

y(ZT)
z(2T) =Hy(2T)1l

and the procedure is continued. After NT intervals we have UI, .. U.\. Let

v

2: Uj
i~ ,

Jls = NT .
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(17)

It should be mentioned that although it appears that the time interval T can be chosen
arbitrarily. the determination of the Lyapunov exponents is obtained asymptotically by
taking a sufficient number of time intervals (NT). It is demonstrated by Goldhirsch el al.
(1987) that Jl,y when plotted against IINT tends to a positive number as IINT approaches
zero. if the system is unstable. The rate of convergence proved to be fast as compared to a
standard procedure (Goldhirsch el al.• 1987). It should be noted that the implementation
of the above procedure in a computer program is straightforward.

In order to reduce the governing equations to a system of first-order equations of the
form (13).let/.,(O) and/.,(O) be the initial values of/.,(/) and/.,(/). respectively. at the first
time interval dl = TIM. where M is a chosen positive integer. Any relaxation function in
eqn (II) can be written in thc form (i. j arc omitted):

(IR)

where '/1(/) == 0 at I ~ O. Let

(19)

and for those cases where "'(I-f) ="',(t)"'J(r}, 11(1) can be approximated in the form

where

H(/) = FoU~(t) - "'(f)j~(O} -/.,(f)l/ll(t)] (20)

This representation is given to each time-dependent term in eqns (lO). where the function
"'(f). for each case. is derived by using the micromechanics theory. In the second time
interval df ~ I ~ 2df. with f.,(O) and /.,(0) denoting the initial values of l(t) and 1(1)
at 1= d/, we again use eqn (18) by shifting the time reference. Consequently. for any
(p-I)dl ~ I ~ pd/, P = 1.2,3, ... , the equations of motion (4) can be written in the form
of eqn (13), where the components of the (I x 10) vector g(/) and the (10 x 10) matrix G
can be determined from eqns (4) in conjunction with eqn (10).

APPLICATIONS

In the following examples, square angle-ply laminated plates simply-supported all
around are investigated. A four-layered [4S~, -4S~. 4S", -4S0] plate is considered. where
the total thickness is O.S mm. and the length-to-thickness ratio is fixed at 20.
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Fig. I. Measured d'lt'l IMoehlenph;1 et al. !'HI) of an ept"y matrix at 50 C. The solid line is its
representation by cubic splines.

Results arc given for a viscoelastic epoxy matrix (Epon 815 mixed with Versamid 140)
whose measured time-dependent Young's modulus £Iml(t) was reported in Moehlenpha et
at. (1971) at 50'C. Cubic splines were titted to these measured data in the region 0 ~ t ~ 106

min. The agreement between the measured values and the cubic splines representation, as
shown in Fig. I, is cxcelknt. The Poisson's ratio of the matrix was assumed to be constant,
\'," = 0.3X (Schapcry, 1974). It should be noted, however, that the micromechanics analysis
(Ahoudi, 19l{\) allows the use of time-dependent Poisson's ratios.

The 1'-300 graphite clastic libcrs were taken to reinforce the epoxy matrix with a 60'1.,
volullle ratio. The elastic constants or the transversely isotropic graphite fibers arc £1°
= 220 GPa, viI) = 0.3, EVI = 22 GPa, V~!l = 0.35 and GI~) =22 GPa, where £~'I and v~)

denote the longitudinal Young's modulus and Poisson's ratio, £(P and "Ip arc the tranversc
Young's modulus and Poisson's ratio and Gio is the axial shear modulus.

In order to obtain the relaxation function F{t) in the form of eqn (IX). let us assume
that F(t) can be described as

F(t)=A+Be il=<A+Bl[I- B.(I_e ")]=Fo[l-,/!(r)J (21)
A+B

where

FII = A+B and
B

t/J(t) = (I-e ~").
A+B

This yields

FU-r)=Fo[l-t/Ju-rH=(A+B)[I-.!3 (I-e"e,,)J, (22)
A+B

With eqns (21), (22), the function H(t) [eqn (20») becomes

H(/) = F [I' (I) ---~. r (0) - ~- i' J' (r) dr + . B e ,I io', e' I,(r) dr]
II . 'I A+B"I A+B II' 'I A+/J

=Fo[J.I(f)- XfB·f.(t)- X~"Be " r. e;'J:(r)drl (23)
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Fig. 2. Lyapunov exponents for an elastic plate. " = 0.0.

Within e.lch /it and the appropriate initial conditions•.f~(O) and!.,(O). H(t) is approximated
as

lI(t) :::: Fo[(I - A:0)1:,(1) - A: Be;" h(O) - A: LJ (I -e;'h1)/ii~(1)]
l-c,'A,

=A};,(t) -LJ c ;-' .f~(O) - 8 ., .... 1.,(1). (24),

The five time-dependent relaxation functions of thc lamina obtained within the
micromechanics theory are (moduli in Giga Pascals and time minutcs) :

£L = 132.0+0.70 cxp (-O.OOI6t)

£1' = 0.050+6.29 exp (-0.0018t)

GLf = 0.013 +2.14 exp (-0.0020t)

GIT = 0.016+2.05 exp( -0.0018t)

Vu =0.34+0.0008 exp (-0.00171) (25)

where £L and E r are the longitudinal and transverse rclaxation functions. GLT and GT are
the corresponding sheur relaxation functions and Vu is the major time-dependent Poisson
ratio. These functions enable onc to determine the time-dependent functions Ai,(t). BitU)
and Di,(t).

The in-plane load considered is in thc)' direction only (N,1f =0) and where N r• = O.
The load frequenncy, O. is taken as twice the fund.tmental natural frequency of the elastic
laminated plate. derived from the free vibration problem [see e.g. Cederbaum et al. (1989)].
The amplitude of the in-plane force is given by N.J = 112N. where N is the static buckling
load [see e.g. Srinivas and Rao (1970») and II is a coefficient.

The following cases were considered: (i) elastic plate [t/!(t) =0 in all stiffnesses] with
II = O.D-Fig. 2. (ii) viscoelastic plate with '1 =O.O-Fig. 3 and with II = O.4-Fig. 4.

In the elastic case the Lyapunov exponents are approaching zero. indicating stability
ofa system without damping. In the viscoelastic counterpart the exponents are approaching
negative values implying that the stability exists. When the system is unstable, the Lyapunov
exponents are approaching positive values. both for elastic and viscoelastic cases.
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Fig, 3. Ly"punov exponents for" viscoelastic pl"te, II = 0,0.
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o

Fig. 4. Lyapunov exponcnts for a viscodasti..: platc, '1 = O,-l.
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